Sobolev Inequalities: Symmetrization and Self Improvement via Truncation
نویسنده
چکیده
We develop a new method to obtain symmetrization inequalities of Sobolev type. Our approach leads to new inequalities and considerable simplification in the theory of embeddings of Sobolev spaces based on rearrangement invariant spaces.
منابع مشابه
ar X iv : 0 70 7 . 03 76 v 1 [ m at h . FA ] 3 J ul 2 00 7 SELF IMPROVING SOBOLEV - POINCARÉ INEQUALITIES , TRUNCATION AND SYMMETRIZATION
In our recent paper [12] we developed a new principle of “symmetrization by truncation” to obtain symmetrization inequalities of Sobolev type via truncation. In this note we consider the corresponding results for Sobolev spaces on domains, without assuming that the Sobolev functions vanish at the boundary. The explicit connection between Sobolev-Poincaré inequalities and isoperimetric inequalit...
متن کاملIsoperimetry and Symmetrization for Logarithmic Sobolev Inequalities
Using isoperimetry and symmetrization we provide a unified framework to study the classical and logarithmic Sobolev inequalities. In particular, we obtain new Gaussian symmetrization inequalities and connect them with logarithmic Sobolev inequalities. Our methods are very general and can be easily adapted to more general contexts.
متن کاملPointwise Symmetrization Inequalities for Sobolev Functions and Applications
We develop a technique to obtain new symmetrization inequalities that provide a unified framework to study Sobolev inequalities, concentration inequalities and sharp integrability of solutions of elliptic equations.
متن کاملSymmetrization and Sharp Sobolev Inequalities in Metric Spaces
We derive sharp Sobolev inequalities for Sobolev spaces on metric spaces. In particular, we obtain new sharp Sobolev embeddings and FaberKrahn estimates for Hörmander vector fields.
متن کاملSharp Interpolation Inequalities on the Sphere: New Methods and Consequences∗
This paper is devoted to various considerations on a family of sharp interpolation inequalities on the sphere, which in dimension greater than 1 interpolate between Poincaré, logarithmic Sobolev and critical Sobolev (Onofri in dimension two) inequalities. The connection between optimal constants and spectral properties of the Laplace-Beltrami operator on the sphere is emphasized. The authors ad...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007